Re-analysis and replication practices in reproducible research

Daniele Fanelli

Conceptual challenges concerning Re-analysis and replication practices in reproducible research

Daniele Fanelli

Conceptual challenges concerning Re-analysis and replication practices in reproducible research

- In what sense can we talk of a "replicability" or "reproducibility" crisis?
 - Look at data on selective reporting
 - small-study effects
 - grey literature bias
 - decline effect
 - Where and what might the problem be?
 - What does "reproducibility" mean?
- What narrative can most productively support transparency and reproducibility?

The main causes of irreproducibility? selective reporting, as manifest in:

Small-study effects

Grey literature bias

Meta-assessment of bias in science

N 1910 meta-analyses from all disciplines

Meta-meta regression 1,910 MA: 33,355 individual studies

(Fanelli, Costas & Ioannidis, 2017, PNAS)

Biases vary, e.g. across domains

• Conceptual challenge n1: science is not all the same, biases vary widely across fields

(Fanelli, Costas & Ioannidis, 2017, PNAS)

Conceptual challenge n2: Not all bias is due to QRPs

- Small studies may be perfectly justified, e.g.
 - Based on intuition/preliminary observations
 - Carefully design a study to maximize chances of seeing an effect, with minimal investment
 - The bias is created by meta-analysts (or readers, journalists etc.) who ignore the context of a study
- Not publishing some (e.g. negative) results <u>may</u> be justified too
 - e.g. study that is clearly of poor quality
 - but also when quality is not poor...
 - Anathema! For many, including myself, before...

A mathematical theory of bias

$$K(Y; XM) = \frac{H(Y) - H(Y|XM)}{H(Y) + H(X) + H(M)}$$

with $H(X) = -\sum_{x} p(x) log(p(x))$ (Shannon's Entropy)

A conclusive negative result ("falsification" of a hypothesis) yields information:

$$\Delta K_{falsif} \propto log(\frac{|\Omega|}{|\Omega|-1})$$

 $|\Omega|$ number of possible hypotheses, explanations, variables, methods, confounders...

As |Ω| grows, value of a negative result rapidly approach zero!

(Fanelli 2016, PeerJ Preprints – 2nd UPDATED VERSION COMING SOON!)

Conceptual challenge n2: Not all biases are unjustified

- Small studies may be perfectly justified, e.g.
 - Based on intuition/preliminary data
 - Carefully design a study to maximize chances of seeing an effect, with minimal investment
- Not publishing some (e.g. negative) results may be justified too
 - If the costs of allowing for some publication bias exceed the costs of publishing lots of negatives
 - e.g. costs of increasing noise in the literature
- Cost/benefits tradeoff likely field-specific

Challenge n 3: Doesn't meta-analysis show that replication occurs?

• Ok, but the "decline effect" reveals a problem

(Ioannidis et al. 2001, Nature Genetics)

The decline effect occurs, but is not ubiquitous

Highly significant "first-year effect" b[95%CI]=0.077[0.022,0.132] On average, circa 8% larger ES

- Aren't failed replications supposed to occur at least <u>some times</u>?
- Doesn't the decline effect show that science works?

Science MAAAS											
Home	News	Journals	Тор	pics Care	ers						
Science	Science Advances	Science Immu	nology	Science Robotics	Science Signaling	Science Translational Medicine					

SHARE Estimating the reproducibility of psychological science

	Psychology Is in Crisis Over Whether It's in Crisis							
BUSINESS	CULTURE	DESIGN	GEAR	SCIENCE	SECURITY	TRA		

KATIE M. PALMER SCIENCE 03.03.16 2:00 PM

Conceptual challenge n 4: What does reproducibility mean?

• Methods repr.

- original, literal sense
- issues with
 - missing information
 - poor/selective reporting
 - lack of expertise
- improved by
 - better reporting, transparency etc.
- ideally 100%

Results repr.

- e.g. decline effect
- mainly issues with
 - methodological flaws
 - poor/selective reporting, QRP etc.
 - intrinsic complexity of phenomena
- may be improved by
 - better reporting
 - transparency
- but is never 100%

- Inferential repr.
 - e.g. RIP's debate on conclusions to draw
- mainly issues with
 - theoretical/ methodological disagreement
- improved by
 - scholarly process

(Goodman, Fanelli and Ioannidis, 2016, Science Tr. Med.)

Science is broken: Fraudulent studies, non-reproducible re money influence... it's all falling apart

April 25th, 2016, by D. Samuelson

When the scientific method is no longer ab

Home
Science
6 Shocking Studies That Prove Science Is Totally Broken

6 Shocking Studies That Prove Science Is **Totally Broken**

By Andrew Marinus, Alan Boyle, Jon Pearl | January 16, 2014 | 1,050,342 views

The 7 Most Terrifying Archaeological Discoveries OLAU

30%

6 Reasons You Can't Trust Science Anymore

52%

PRODUCIBILITY CRISIS?

By Matt J. Michel | August 13, 2015 | 626,358 views

👆 Add To Favorites

Conceptual challenges

- 1) bias and other issues are not ubiquitous
- 2) selective study design or selective reporting may at times be justified
- 3) meta-analysis and the (occasional) decline effect show that science works
- 4) reproducibility has different values and meanings in different contexts
 - repr. of results and inference are complex issues
 - reproducibility of methods is unobjectionable and sustains any form of reproducibility
- 5) aren't we living evidence that science is healthy?

In what sense can we talk of a reproducibility "crisis" in science?

- Not in the sense that "science is broken"
- A clear simple message such as "science is in crisis" can have, and had up to this point benefits, but:
 - times have changed
 - our evidence and understanding has matured
 - a crisis narrative is no longer supported
 - nor is it necessary

In what sense can we talk of a reproducibility "crisis" in science?

- More in the sense that we face "new opportunities and challenges"
- computers and the internet are making science mightier than ever
 - tackle more subtle, complex phenomena
 - ever more complex, computational analyses
 - increasingly global collaborations
- new challenges for RI but also the promise of a science fully "reproducible", shared, communal, organically skeptical, etc.
- We don't need a "crisis" to embrace the future! email@danielefanelli.com